JBCR Series

ASME Blowdown Condensate Cooler Tanks With Tangential Inlet Connection For Handling Hot Condensate

APPLICATION

- JBCR Series condensate cooler tanks are designed with tangential inlets to enhance the steam and condensate separation efficiency. The vortex action allows the hot condensate to move to the vessel wall area while forcing the flash steam to the center.
- Flash steam exits the vessel through the vent connection on top, and the hot condensate falls to the bottom, activating the thermal control valve.

DESIGN PRESSURE AND TEMPERATURE

- Maximum design pressure: 150 PSI (1034 kPa)
- 175, 200, 250, 300 PSI available upon request
- Maximum design temperature: 500°F (260°C)

SPECIFICATIONS

- Designed and built in accordance with the ASME BPV Code Section VIII, Division 1
- Installation: vertical
- Shell: Carbon Steel with exterior gray primer finish
- Wear plate: Stainless Steel, ⅛" thick
- Tangential inlet connection: MNPT or 150# RF ANSI flange
- Vent connection: NPT or 150# RF ANSI flange
- Drain connection: MNPT or straight pipe
- Optional factory installed bracket supports can be welded to the side wall.
- Angle legs can be supplied to match existing units
- After cooler available upon request

TYPICAL DESIGN SPECIFICATION

Furnish and install as shown on plans a John Wood Model No. JBCR-26-_____ ASME stamped vertical blowdown condensate cooler tank with tangential inlet connection and Stainless Steel wear plate. The unit shall have a _____” MNPT/flanged tangential inlet connection and _____” NPT/flanged vent connection. The unit must be designed and constructed in accordance with the ASME Boiler and Pressure Vessel Code Section VIII, Division 1 with a stamped MAWP of 150 PSI (1034 kPa).
JBCR Series

INLET CONNECTION OPTIONS
- □ 1", 1¼", 1½", 2", 2½, or 3"
- □ NPT
- □ 150# RF ANSI Flange

VENT CONNECTION OPTIONS
- □ 2", 2½, 3", 4", 5", 6", 8"
- □ NPT
- □ 150# RF ANSI Flange

DRAIN CONNECTION OPTIONS
- □ 2", 2½, 3", 4", 5", 6", 8"
- □ NPT
- □ 150# RF ANSI Flange

Dimensions are approximate and subject to change

Dimensions should not be used for pre-piping

Weights are approximate

Stock model

<table>
<thead>
<tr>
<th>MODEL NUMBER</th>
<th>MAWP</th>
<th>A DIA</th>
<th>B OVERHEADS</th>
<th>C DIM</th>
<th>D DRAIN</th>
<th>E DIM</th>
<th>F VENT</th>
<th>G DIM</th>
<th>H DIM</th>
<th>I INLET</th>
<th>J DIM</th>
<th>K DIM SIZE</th>
<th>L DIM</th>
<th>M BOLT CIRCLE</th>
<th>N DIM</th>
<th>TANK WEIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>JBCR-26-001</td>
<td>150</td>
<td>12</td>
<td>305</td>
<td>19½</td>
<td>6½</td>
<td>2½</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>5½</td>
<td>½</td>
<td>9¾</td>
<td>12¾</td>
<td>1½</td>
<td>1½</td>
<td>40</td>
</tr>
<tr>
<td>JBCR-26-003</td>
<td>150</td>
<td>14</td>
<td>356</td>
<td>27½</td>
<td>4½</td>
<td>2½</td>
<td>9</td>
<td>9</td>
<td>1½</td>
<td>5½</td>
<td>¼</td>
<td>9¾</td>
<td>14</td>
<td>1½</td>
<td>1½</td>
<td>85</td>
</tr>
<tr>
<td>JBCR-26-004</td>
<td>150</td>
<td>14</td>
<td>356</td>
<td>39</td>
<td>4½</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>5½</td>
<td>¾</td>
<td>9¾</td>
<td>14</td>
<td>1½</td>
<td>1½</td>
<td>105</td>
</tr>
<tr>
<td>JBCR-26-005</td>
<td>150</td>
<td>16</td>
<td>406</td>
<td>38</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>2</td>
<td>6¾</td>
<td>¾</td>
<td>9¾</td>
<td>16</td>
<td>1½</td>
<td>1½</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>JBCR-26-006</td>
<td>150</td>
<td>16</td>
<td>406</td>
<td>46</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>2½</td>
<td>6</td>
<td>¾</td>
<td>9¾</td>
<td>16</td>
<td>1½</td>
<td>1½</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>JBCR-26-008</td>
<td>150</td>
<td>24</td>
<td>610</td>
<td>48</td>
<td>7½</td>
<td>12</td>
<td>14</td>
<td>3</td>
<td>9¾</td>
<td>1</td>
<td>9½</td>
<td>24¾</td>
<td>2</td>
<td></td>
<td>395</td>
<td></td>
</tr>
</tbody>
</table>

__Notes:__
- PSIG IN MM IN LB
- Dimensions are approximate and subject to change
- Dimensions should not be used for pre-piping
- Weights are approximate
- *Stock model*